搜索
当前所在位置:首页 >> 点集

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

发布时间:2025-09-10 13:44:31 作者:xpmk 点击:382 【 字体:

作者:赖文昕

编辑:郭思、用扩尤洋陈彩娴

说起扩散模型生成的散模东西,你会立刻想到什么?型生

是OpenAI的经典牛油果椅子?

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

是英伟达Magic3D生成的蓝色箭毒蛙?

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

还是斯坦福大学和微软Folding Diffusion生成的蛋白质结构?

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

这些都是扩散模型的魔法展示,而近期,成神关于扩散模型的经网研究又进行了一次全新的升级。

由新加坡国立大学尤洋团队、团队家庭女主爆料完整版加州大学伯克利分校以及Meta AI Research联手发布的不开一项名为“Neural Network Diffusion”的研究,已经实现了利用扩散模型来生成神经网络,玩笑这意味着扩散模型不再局限于生成表面的用扩尤洋产物或物体结构,而是散模直接进行底层革新,开始拿神经网络做文章了,型生颇有种用魔法来打败魔法的成神意味。

用扩散模型生成神经网络?经网NUS 尤洋团队:这不是开玩笑

论文地址:https://arxiv.org/pdf/2402.13144.pdf

该研究一出,迅速在国际AI社区引起了热烈反响,团队登上了各大模型开发平台的不开热搜榜单,在业界内收获了极高赞誉。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

这项工作中,研究团队创新性地应用扩散模型来生成高性能神经网络的抖音男主播封号合集参数配置。他们结合了自动编码器框架和标准潜在扩散模型(LDM)设计了一种新颖的方法,即“参数扩散”(p-diff),通过训练LDM从随机噪声中合成有效的神经网络参数latent representations。

此方法具有以下特点:1)它始终达到与训练信息相似的性能,甚至能在多信息集和架构中增强性能;2)生成的模型与训练的模型有很大的不同,这表明此方法可以合成新参数,而不是记忆训练样本。

扩散模型如何生成“神经网络”?

尽管扩散模型已经在视觉内容生成任务上取得了显著成就,然而在其他众多领域的应用潜力仍有待深入挖掘。

在此之前,学术界和工业界的研究重心主要在于如何通过传统的学习策略来获得针对特定任务表现优异的神经网络参数,而不是直接利用扩散模型进行参数生成。学者们普遍从统计学先验和概率模型的角度出发,例如探索随机神经网络架构及贝叶斯神经网络方法,以优化模型性能。

而在深度学习这个大框架下,虽然监督学习和自监督学习一直是训练神经网络的核心机制,并且在很多实际应用中取得了巨大成功。但为了更好地展示扩散模型在生成高效能模型架构与参数方面的卓越能力,研究团队大胆地将目光投向了尚未被充分探索的领域,尝试利用扩散模型来创造并优化高性能、结构新颖的神经网络参数。

简而言之,“Neural Network Diffusion”项目所采用的是一种名为“神经网络扩散”的方法(p-diff,p代表参数),使用标准的LDM来合成新参数。

该团队经过深入研究神经网络的训练机制以及扩散模型的工作原理后,敏锐地洞察到:基于扩散原理的图像生成过程与随机梯度下降(SGD)等常用学习方法之间存在着两种相似性。这意味着扩散模型或许能够借鉴并革新现有的训练范式,从而为构建更加智能且高效的神经网络提供新的视角与工具。

首先,神经网络训练和扩散模型的逆过程都可以被视为从随机噪声/初始化到特定分布的转变。其次,高质量图像和高性能参数也可以通过多次噪声的添加来降级为简单分布,例如高斯分布。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

基于这些观察,研究团队引入了一种新的参数生成方法,称之为“神经网络扩散”(p-diff,p代表参数),它采用标准的LDM来合成一组新的参数。

扩散模型能够将给定的随机分布转换为特定的随机分布,因此研究人员使用了一个自动编码器和一个标准的LDM来学习高性能参数的分布。

该研究方法整合了参数自动编码器和扩散模型来实现神经网络参数的创新生成。首先,研究人员选取一组经过充分训练且表现出色的模型作为基础,从中抽取一部分关键或有代表性的参数子集,并将这些多维结构的参数展平为一维向量形式。

接下来,他们构建了一个参数自动编码器架构,其中包含一个编码器模块,用于从所提取的一维参数向量中学习潜在的低维表示(latent representations),这一过程能够捕捉到原有参数的关键特征和模式。同时配备一个解码器模块,其任务是根据这些潜在表示恢复出原始的高维参数结构。

在此基础上,团队进一步训练一个标准的扩散模型(LDM,Latent Diffusion Model)以适应参数生成场景,使其能够在随机噪声输入下逐步迭代并生成与目标参数对应的高质量潜在表示。

训练完成后,研究人员利用一个逆扩散过程(p-diffusion process)来生成新的神经网络参数。这个过程始于一个随机噪声向量,通过逆向递归地应用扩散模型的反变换,将其一步步转化为有意义的潜在表示。最后,将这些合成的潜在表示输入训练好的解码器中,解码器会将其转换为全新的、有望保持高性能的神经网络参数。这种方法不仅拓展了扩散模型的应用领域,还可能挖掘出之前未被发现的有效网络结构和参数配置。

训练后,研究团队利用 p-diff 通过以下链条生成新的参数:随机噪声 → 逆过程 → 训练好的解码器 → 生成的参数。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑


为了验证该方法的有效性,研究团队紧接着还在MNIST、CIFAR-10/100、ImageNet-1K、STL-10等广泛的信息集上进行了评估实验,实验主要在神经网络ResNet-18/50、ViT-Tiny/Base 和 onvNeXt-T/B 上进行。

研究团队详细阐述了具体的训练细节。在实验中,自动编码器和LDM均包含了一个基于 4 层 1D CNN 的编码器和解码器。研究人员默认收集所有架构的200 个训练信息。 在神经网络 ResNet-18/50 上,他们从头开始训练模型。到了最后一个 epoch中,他们则继续训练最后两个归一化层并修复其他参数。在大多数情况下,自动编码器和潜在扩散训练可以在单个英伟达的 A100 40G GPU 上于 1~3 小时内完成。

实验过后,研究人员发现,在大多数情况下,p-diff的方法取得了与两个基线相似或更好的结果,这表明了此方法可以有效地学习高性能参数的分布,并从随机噪声中生成优异的模型。而且,该方法在各种信息集上始终表现良好,也证明了它具有良好的通用性。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

那么如何进一步确认p-diff是否真正可以合成新参数,而不只是在记忆训练样本呢?

为了验证p-diff能够生成一些与原始模型表现不同的新参数,研究团队设计了另一个实验,通过比较原始模型、添加噪声模型、微调模型和 p-diff 模型的预测和可视化来研究它们之间的差异。

他们进行了四组对比:1)原始模型之间的相似性; 2)p-diff模型之间的相似性; 3)原始模型和p-diff模型之间的相似性; 4) 原始模型和 p-diff 模型之间的最大相似度(最近邻)。

可以发现,在不同情况下,生成的模型之间的差异远大于原始模型之间的差异。 另外,即使是原始模型和生成模型之间的最大相似度,也低于原始模型之间的相似度。这表明,p-diff 的确可以生成与其训练信息表现不同的新参数。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

结语

Sora的平地一声惊雷,让本就火爆的文生图、文生影片的领域又增添了好几分热度,也让在图像和影片生成方面取得了显著成功的扩散模型获得了更多的关注。

而无论是Sora、DALL·E 、Midjourney,还是Stable Diffusion等已经拥有众多客户的模型,它们背后的魔法都是扩散模型。在已有的例子中,扩散模型总是被运用在生成图片或影片上,而这一次,扩散模型居然直接渗入更深层,直接生成神经网络,这堪称机器学习中“用魔法打败魔法”的神操作。

今日,研究团队中的三作 Zhuang Liu 还在社交媒体上答复了网友的疑惑,解释了“Neural Network Diffusion”和Sora 负责人 William Peebles 此前发布的研究“Learning to Learn with Generative Models of Neural Network Checkpoints”之间的区别:

William Peebles的研究工作是逐步生成参数,更像是优化器,将先前的检查点作为输入。 “Neural Network Diffusion”则是直接生成整套参数,无需之前的权重作为输入。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

尽管研究团队目前尚未解决内存限制、结构设计效率和性能稳定性等问题,但使用扩散模型生成神经网络的创新尝试,让大模型领域的工艺边界又向外开拓了一面。

扩散模型未来将会有何增长,让我们拭目以待。

雷峰网(公众号:雷峰网)AI 科技评论将持续关注大模型领域动态,欢迎添加anna042023,交流认知,互通有无

雷峰网原创文章,未经授权禁止转载。详情见转载须知。

用扩散模型生成神经网络?NUS 尤洋团队:这不是开玩笑

阅读全文
相关推荐

马斯克因“百万美元抽奖”再面临诉讼

马斯克因“百万美元抽奖”再面临诉讼
当地时间8月20日,美国一名联邦法官要求马斯克必须对一起涉及“百万美元抽奖”的集体诉讼应诉。亚利桑那州选民杰奎琳·麦卡弗蒂作为代表提起集体诉讼,指控马斯克及其创建的“美国政治行动委员会”在2024年大 ...

“中国第一将军县”县长调整

“中国第一将军县”县长调整
湖北黄冈红安网近日报道显示,钟林已任红安县委副书记、代县长。钟林资料图)8月2日晚,“弘扬‘大别山精神’ 八月桂花遍地开——中国民族音乐红色经典作品音乐会”举行。钟林在致辞中说,红安是一片被革命热血浸 ...

43岁贾玲罕见露面,又瘦了!

43岁贾玲罕见露面,又瘦了!
8月2日,贾玲以品牌大使身份亮相上海某品牌线下活动。当天,贾玲身穿一件紫色短裤,搭配T恤和外套,运动风满满。利落的高马尾造型,让她看起来活力四射,扑面而来的运动感,十分帅气。一出场,贾玲就小跑着与现场 ...

非法收受财物6794万余元 李勇一审被判十四年

非法收受财物6794万余元 李勇一审被判十四年
2025年8月5日,湖北省襄阳市中级人民法院公开宣判中国海洋石油集团有限公司原党组副书记、总经理李勇受贿一案,对被告人李勇以受贿罪判处有期徒刑十四年,并处罚金人民币三百万元;对其受贿所得财物及其孳息依 ...

电影中的抗战——百团大战破囚笼

电影中的抗战——百团大战破囚笼
打一个大仗,打出中国人的勇气!1940年8月到1941年1月,八路军在华北敌后发动大规模进攻和反“扫荡”战役,沉重打击了日军“囚笼政策”。这场战役共有105个团,约20万人参战,因此被称为“百团大战” ...

从与牛为邻到1580演唱会:岳云鹏的“捞金秘籍”,观众甘愿买单?

从与牛为邻到1580演唱会:岳云鹏的“捞金秘籍”,观众甘愿买单?
“1580一张票,唱的还是《五环之歌》,你买不买?”2025年7月,岳云鹏的“非要唱”演唱会门票开售,最高票价为1580元,比刀郎的还贵300块。结果20秒售罄!网友炸了,一个说相声的,凭啥?可骂归骂 ...

阿尔及利亚一侦察机在训练时坠毁 致4人死亡

阿尔及利亚一侦察机在训练时坠毁 致4人死亡
△费尔哈特·阿巴斯机场资料图)据阿尔及利亚民防部门消息,当地时间8月5日,一架民防侦察机在该国北部吉杰勒省费尔哈特·阿巴斯机场执行训练任务时坠毁,事故导致机上4人全部遇难。官方暂未公布事故具体原因。总 ...

日本广岛大学再次发现疑似未爆弹

日本广岛大学再次发现疑似未爆弹
当地时间5日,据日本广岛县警方消息,当天上午,位于广岛市南区的广岛大学霞校区内一处施工工地发现疑似为未爆弹的物体。部分周边道路目前限制通行。据称,疑似未爆弹的物体长约60厘米,直径约15厘米。该施工工 ...

宣布重大收购预案 开普云连续两日“20CM”涨停

宣布重大收购预案 开普云连续两日“20CM”涨停
每经记者 吴泽鹏 每经编辑 文 多8月25日,复牌的开普云SH688228,股价94.75元,市值63.97亿元)开盘即涨停。前一天晚间,开普云披露了重大资产购买暨关联交易预案,上市公司计划收购深圳市 ...

87版西游记如来佛扮演者去世

87版西游记如来佛扮演者去世
8月3日,演员朱龙广家属发布讣告,演员朱龙广因病医治无效,于2025年8月2日在北京逝世,享年86岁。据悉,朱龙广曾塑造《地道战》高传宝、87版《西游记》如来佛、《武林外传》佟掌柜父亲佟伯达等经典角色 ...

以色列防长:以军必须在加沙外围保持永久驻军

以色列防长:以军必须在加沙外围保持永久驻军
当地时间8月5日,以色列国防部长卡茨表示,他已经就以色列必须采取的安全和政治措施制定了立场,以确保实现战争目标。卡茨认为,击败加沙地带的哈马斯武装人员,同时为人质返回创造条件,是加沙战争的主要目标,以 ...

“男子杀害7个月大侄女案”开庭审理,嫌犯当庭认罪

“男子杀害7个月大侄女案”开庭审理,嫌犯当庭认罪
8月6日上午,“男子杀害7个月大的侄女案”在广东省惠州市中级人民法院开庭审理。被害女婴父亲冷夏化名)告诉新京报记者,庭审中哥哥冷某敏当庭认罪。据冷某敏讲述,案发当晚,他想去抱哭闹的小侄女,被母亲“嫌弃 ...
返回顶部